One-class classification of point patterns of extremes
نویسندگان
چکیده
Novelty detection or one-class classification starts from a model describing some type of ‘normal behaviour’ and aims to classify deviations from this model as being either novelties or anomalies. In this paper the problem of novelty detection for point patterns S = {x1, . . . ,xk} ⊂ R is treated where examples of anomalies are very sparse, or even absent. The latter complicates the tuning of hyperparameters in models commonly used for novelty detection, such as one-class support vector machines and hidden Markov models. To this end, the use of extreme value statistics is introduced to estimate explicitly a model for the abnormal class by means of extrapolation from a statistical model X for the normal class. We show how multiple types of information obtained from any available extreme instances of S can be combined to reduce the high false-alarm rate that is typically encountered when classes are strongly imbalanced, as often occurs in the one-class setting (whereby ‘abnormal’ data are often scarce). The approach is illustrated using simulated data and then a real-life application is used as an exemplar, whereby accelerometry data from epileptic seizures are analysed these are known to be extreme and rare with respect to normal accelerometer data.
منابع مشابه
Classification of EFL Students: EFL Teachers’ Criteria and a Case Study
Language learners have frequently been classified according to individual difference variables such as aptitude, personality, cognitive style, and motivation. However, a language teacher’s view seems to have been missing from such classifications. This exploratory research investigated whether and by which criteria Iranian EFL teachers classify their students. Based on preliminary interviews wi...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملروشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...
متن کاملDetection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016